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Risk Regulation and the “Faces” of Uncertainty

Vern R, Walker*

Introduction

The problem of “decision making in the face of uncertainty” is how
to regulate on the basis of incomplete information that has significant
potential to be inaccurate. My primary goal is to clarify some aspects of
such decisionmaking through surveying types of uncertainty inherent in
information. I present a taxonomy for kinds of inherent uncertainty —
a classification and description of the “faces”of uncertainty. A second
goal is to identify which kinds of uncertainty can and cannot now be
measured quantitatively.

A contextual assumption is that we need to evaluate decision rules
for dealing with faces of uncertainty. As a social enterprise, risk
regulation, whatever its substantive objectives, should be as effective,
efficient and equitable as practically possible. These “three E’s” form
a set of “process objectives” or “meta-goals.”

First, risk regulation should be as effective as possible to maximize
the likelihood of achieving a selected balance of risk taking and
avoidance. Second, with regard to efficiency, we may, e.g., try to
minimize adverse collateral consequences, maximize net benefits after
accounting for costs, or use available resources cost-effectively. Third,
the goal of equitable results is partly a concern for affected parties’
appropriate distribution of costs and benefits, and partly a respect for
the potentially affected parties’ substantive and procedural rights.
While these three meta-goals are distinct and complementary, they are
also sometimes in tension. The optimal and most achievable blend of all
three meta-goals depends upon circumstances surrounding each
regulatory action.

These meta-goals form an evaluative context for risk regulation and
derivatively for regulatory factfinding. A necessary condition for
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achieving the optimal blend of effectiveness, efficiency and equity for a
particular regulatory action is the appropriate use of available scientific
information. For risk regulators to predict consequences accurately, to
minimize collateral side-effects, and to allocate fairly both costs and
benefits, scientific information and conclusions supporting a regulation
must be adequate and accurate. We can achieve appropriate accuracy by
understanding the types and degrees of uncertainty inherent in
scientific information.

This idea is illustrated by considering the role three principal
categories of causal information needed to justify and guide regulatory
decision making: information about risks, benefits and costs.
Information about risks associated with a regulatory action is essential.
Such information is often the result of quantitative assessment,
grounded in information about causal processes. Information about
possible benefits is perhaps less studied as a separate category, except by
economists, but we can imagine a methodology for “benefit
assessment” with or without attempts at economic valuation. Finally,
cost analysis is also based on causal information about both natural and
market processes. The point here is not to defend a comprehensive
classification scheme for substantive types of information, but to
illustrate that in each category, information about causation is of
fundamental importance. We need to know what causes what to
determine risks, benefits or costs — both their magnitudes and their
likelihoods of occurrence. If our information about causal action has
inherent uncertainties, then risk, benefit and cost assessments are subject
to those uncertainties, and any justification of the regulation as efficient
and equitable is subject to uncertainty.

The evaluative context of risk regulation sets the stage for the
article’s primary task, describing a taxonomy of the kinds of
uncertainty inherent in causal information, and therefore indirectly
inherent in conclusions about risks, benefits and costs. From the
uncertainty standpoint, causal information is divided usefully into two
major categories: information about groups and information about
individuals. An example of causal conclusions about groups is that
exposure to a certain chemical through inhalation can cause human
cancer and that the upper-bound risk of excess cancer cases in groups
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exposed at certain levels is estimated as one-in-one-million. Examples
of causal conclusions about individuals are that my daughter probably
will not develop cancer from her exposure to the aforesaid chemical or
that a specific individual’s case of lung cancer was probably from
cigarette smoking. Each category, group and individual, has its own
distinctive types of inherent uncertainty. These are logically distinct,
generally independent of each other, and cumulative in contributing to
the “total uncertainty” inherent in ultimate conclusions about causation.
I will build up a profile of these types of uncertainty in a series of steps,
beginning with the uncertainties inherent in group conclusions.

Information about Groups

There are at least five distinct types of uncertainty inherent in causal
information about groups: uncertainties due to concept selection,
measurement, sampling, mathematical modeling and causal modeling.
I will discuss each of these in turn.!

Concept Uncertainty. The first kind of uncertainty inherent in
information about groups stems from choice and design. By selecting a
variable to gather data, the boundaries of our possible conclusions are
set by the variable selected, the classification categories employed, and
the relationships among those categories (nominal, ordinal or scalar).?
For example, in conducting hazard identification, the possible
conclusions about causation are constrained not only by the choice of
endpoint to study, but also by the choice of how to measure or classify
those adverse effects. The conclusions will be surrounded by

1 For a general discussion of these five types of uncertainty, See Vern R. Walker,
The Siren Songs of Science: Toward a Taxonomy of Scientific Uncertainty for
Decisionmakers, 23 Conn. L.Rev. 567 (1991).

2 A “nominal” variable is qualitative only, and yields nominal or categorical data.
Its classification categories are merely different from each other, without ranking or
ordering among the categories. An example is the variable {color: red/yellow/...}.

An “ordinal” variable is the simplest kind of quantitative variable. Its classification
categories have a rank or order, usually reflecting a relative increase in some property,
but there is no unit of measurement for the amount of difference between categories.
An example is the variable {being hazardous: low/moderate/high}.

Finally, a “scalar” variable is fully quantitative. Its classification categories are not
only rank ordered, but they are related by 2 unit of measurement for incremental
frequency, degree, or amount of some relevant property. An example is the variable
{length: 1 inch, 2 inches, ...}

‘ See, ;’.g., E. Ghiselli et al., Measurement Theory for the Behavioral Sciences, 12-
24 (1981).
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uncertainty by excluding from our selection of variables.3 What would
we find by studying psychological or pharmacokinetic variables, or by
using cardinal instead of nominal measures for those variables? Also,
some conceptual inertia occurs once we decide to think about
phenomena using selected concepts. Psychological, theoretical and
practical influences make us tend to use variables used before.

Concept uncertainty, so understood, seems not currently
susceptible to quantification. The concept uncertainty that actually
underlies our causal information appears not quantifiable or measurable
in any generally accepted way. There is no metric for characterizing
how much concept uncertainty is inherent in our causal conclusions. As
we will see, however, other types of uncertainty are currently
quantifiable in certain ways.

Measurement Uncertainty. Once variables have been selected, a
second kind of uncertainty inheres in any data set gathered by using
those variables. Uncertainty arises as to the reliability and validity of
that data. A measurement method is “reliable” to the extent that it
produces consistent results when repeatedly applied to the same
individuals, The degree of random scatter within such repeated
measurements is the degree of “precision” in the method.? An everyday
example is the clustered but varying results obtained by weighing
ourselves repeatedly on an inexpensive bathroom scale. Unlike
reliability, a measurement method is “valid” to the extent that it truly
measures what we think it measures.® For example, a bathroom scale
that produces systemically too high values produces biased data relative
to the true weight. Validity concerns the “accuracy” of the
measurement data, not its precision.”

Measurement reliability is sometimes quantifiable. We can use
descriptive statistics such as variance and standard deviation to measure

3 One result of such exclusion is overlooking additional risk factors or adverse
effects. Another possible result, however, is that causal connections will be
misidentified for those endpoints that are studied. See Causal Uncertainty infra.

4 Ghiselli et al., supra note 2, at 184, 191.

>  See, eg., Peters & Westgard, Evaluation of Methods, in Textbook of Clinical
Chemistry 412 (N. Tietz ed. 1986); Mandel, Accuracy and Prediction: Evaluation
and Interpretation of Analytical Results in 1 Treatise on Analytical Chemistry 256-
60 (I. Kolthoff & P. Elving eds. 1978).

6 E. Carmines & R. Zeller, Reliability and Validity Assessment 12 (1979).
7 Peters & Westgard, supra note 5, at 412-13.
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reliability — the degree of precision or random scatter in repeated
measurements.? That is, there are ways to measure the degree of
inconsistency in repeat measurements on the bathroom scale.
Quantifying degrees of validity, however, is far more problematic. By
having a criterion or standard method to compare our results, such as a
very accurate hospital scale, then we should be able to quantify the
extent to which one method (bathroom scale) produces results that
agree with results from the criterion method (hospital scale).”
Characterizations of accuracy other than criterion validity, however,
seem to be only qualitative in nature. Instruments to test or measure
intelligence, for example, are notorious for the controversy over what
they actually measure. Although reliability is generally quantifiable,
validity is not, with the possible exception of criterion validity.
Sampling Uncertainty. A third kind of uncertainty is in sampling,
which arises once we generalize from sample data to conclusions about a
population. Yet, such generalization is the norm in science.
Measurements are taken on a sample group, and the summary measures
describing that sample data are called “statistics.”!® A population,
however, is a larger group from which a sample is drawn. The summary
measures for the data that would result from measuring every member
of the population are called “parameters.”!! Under certain conditions,
current sampling theory enables us to characterize the extent of
uncertainty. If our sample is drawn in a random way that allows the
computation of probabilities for drawing samples of a given size, then,
through significance testing or confidence intervals, we can reach
conclusions about whether the (true) parameter is equal to a
hypothetical value or is likely inside a given interval.1? For example, a
laboratory study obtaining positive results in animal samples might

8  We can determine the extent to which a set of dara exhibits a central tendency,
dispersion and form consistent with random variation. For a general discussion of
these and other statistical concepts, See David H. Kaye & David A. Freeman,
Reference Guide on Statistics in Federal Judicial Center, Reference Manual on
Scientific Evidence (1994).

9 Peters & Westgard, supra note 5, at 412; Carmines & Zeller, supra note 6, at
19.

10 1. Loether & D. McTavish, Descriptive and Inferential Statistics: An
Introduction 4-5 (2d ed. 1980); W. Hays, Statistics 190-92 (4th ed. 1988).

11 See Loether & McTavish, supra note 10, at 6.
12 Walker, supra note 1, at 590-98.

9 Risk: Health, Safety & Environment 27 [Winter 1998]



32

warrant that there is probably a real increased risk due to exposure
(because “the sample results are statistically significant”) or that the true
risk probably falls within a specified range (the “confidence interval”).
We can also compute the “power” of the study to detect whether the
(true) parameter differs from a hypothetical value.l3 These three
techniques of inferential statistics (significance testing, confidence
intervals and power analysis) are means of characterizing the degree of
sampling uncertainty inherent in conclusions about populations.

Thus, sampling uncertainty is quantifiable if the selection is
sufficiently random that a probability can be computed for samples.
Such sampling is still no guarantee that our predictions about the
population value will be correct: sampling uncertainty is inherently
probabilistic whenever it occurs. If the sampling protocol does not yield
a probability sample, however, it is uncertain whether the drawn sample
is actually representative of the entire population. Without a probability
sample our sampling uncertainty is generally unquantifiable.

Mathematical Modeling Uncertainty. A fourth kind of uncertainty
arises when we use models to predict the values of one variable from the
values of other variables. Whereas concept, measurement and sampling
uncertainties occur even when we are dealing with data from only one
variable, modeling uncertainty occurs when the predictive relationships
among variables are not as simple as our model assumes. Examples of
predictive mathematical models are regression analysis and relative
risk.14 Using either type, we risk error when using exposure data, for
example, to predict the disease’s incidence in an exposed group.

With some mathematical models we can quantify to some extent
the expected degree of predictive error. In linear bivariate regression

13 Technically, the “power” of a statistical test is “the probability of being right in
rejecting Ho [the hypothetical value] given that H, is true,” where Ho and H, are
pzssible values for the parameter in the population. Hays, suprz note 10, at 248, 263-
64.

14 Regression analysis is a specific way of analyzing a variable to be predicted (the
dependent variable) using one or more predictor variables (independent variables).
See, e.g.,, Daniel L. Rubinfeld, Reference Guide on Multiple Regression in Federal
Judicial Center, Reference Manual on Scientific Evidence, supra note 8, at 415.

Relative risk is the ratio of the incidence of an adverse effect in a group of
individuals with a risk factor (e.g., exposure) relative to the incidence in a group
similarly situated except for that risllcJ factor. See, e.g., Linda A. Bailey et al.,
Reference Guide on Epidemiology in Federal Judicial Center, Reference Manual on
Scientific Evidence supra note 8, at 121, 147-49.
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models, for example, the coefficient of determination (r2) and
Pearson’s correlation coefficient (r) are measures of predictive
uncertainty because they quantify the strength of the linear association
between the predictor and predicted variables.!> Yet, other kinds of
modeling uncertainty are less quantifiable — such as uncertainty due to
the form of the selected mathematical equation. To determine the
amount of uncertainty that is due to using a linear model over a
nonlinear model, for example, then we may have to fit both forms to
the data and conduct a sensitivity analysis between them.

Causal Uncertainty. The fifth kind of uncertainty inherent in
causal information about groups is causal uncertainty itself. This is
created by making an inference from statistical associations established
by mathematical modeling to conclusions about causation. While
mathematical models and statistical associations can sometimes provide
decent predictions, only causal models provide true explanations of
why whar we observe happens as it does. Causal explanations depend
upon what risk assessors call “hazard identification”!® and what courts
sometimes call “generic causation.”!” Generic causal capacity is the
agent’s capability to cause some type of effect, even if not always. An
example is whether a certain chemical can cause human cancer.

Statistical association does not entail generic causation. Even finding
a statistically significant association between exposure and illness in a
study, does not mean that the exposure is necessarily a causal factor in
causing the illness. For example, an unstudied variable may cause the
observed association that is related both to exposure and to illness.!8
Moreover, a lack of statistical association between variables is not
sufficient evidence of a lack of causation. For example, an antagonistic
action between two study variables could tend to mask the causal
relations among the variables.!? While statistical association provides

15 Walker, supra note 1, at 604-05; See Hays, supra note 10, at 554-60.

16 National Research Council, Risk Assessment in the Fed. Gov’t.: Managing the
Process 19-23 (1983); National Research Council, Science and Judgment in Risk
Assessment 26, 57-60 (1994).

17 Eg, Sterling v. Velsicol Chem. Corp., 855 F.2d 1188, 1200 (6th Cir. 1988).
18 See, eg., J. Davis, The Logic of Casual Order 25-27 (1985).

19 1d ar33.
There may also be a real association in the population but the study does not have
sufficient statistical power to detect it. This would not be a problem of causal
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our best evidence of causation, an inferential step is involved in reaching
causal conclusions on the basis of statistical evidence.

It is not easy, and may be impossible, to quantify the residual causal
uncertainty created by this inferential step, or the extent of the reduced
possibility of causal error in our conclusions. The adequacy of a causal
account remains largely a professional judgment matter. It requires the
evaluation and combination of many factors that we cannot quantify,
such as the plausibility of a causal mechanism posited by a theory.

Information about Specific Individuals

In addition to the above five types of uncertainty inherent in
scientific conclusions about causation in groups, there are two
additional areas of uncertainty associated with conclusions about
specific individuals (as opposed to groups).

Direct Inference. First, there are uncertainties inherent in a “direct
inference” from statistical information about a group to a probabilistic
conclusion about any specific individual in the group. Suppose scientific
research supports a causal mode] that relates a certain pathway and level
of exposure to an increase in the illness’s incidence. Suppose further that
the data show biological variability in the human response to this
exposure. That is, some people do and do not develop the illness. Some
who develop the illness develop it more quickly than others or with
more severity. We are often interested in using such group information
to make a prediction about a specific individual: if this specific
individual were exposed in that way, what is the probability that he or
she would develop the illness? Sometimes we ate interested in providing
a retrospective causal explanation: if this specific individual has the
illness and has been exposed in that way, what is the probability that the
exposure caused the individual’s illness? (The courts often require
plaintiffs to prove such “specific causation.”)?0 The predictive question
is often asked to guide a course of action (such as taking a medication
or voting for an incinerator) and the question about explanation might
be asked in deciding compensation (as in a toxic tort lawsuit). Given

uncertainty. however, but one of sampling uncertainty. The process of sampling
created the misleading lack of association in the sample, although the lack of
association in the sample led to mistaken conclusions about generic causation.

20 Eg., Sterling, 855 E.2d at 1200.
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the variability in the human response to the exposure, we can interpret
the questions as inquiries about where the specific individual falls within
that group variability. Are we warranted in using the group statistics to
directly infer a probabilistic conclusion about a specific individual? For
example, if 35% of exposed individuals are expected to develop the
illness, is there a 0.35 probability that a specific individual will do so?

There are new sources of uncertainty inherent to such a direct
inference — in addition to already discussed uncertainties inherent in
group information from which the inference begins. These stem from
two considerations. First, for any variable, the measurement “score” for
the specific individual is either known or unknown. Second, the generic
causal relevance of that variable to the illness is either adequately
understood or not. These two considerations form a matrix with four
combinations, as shown below.

Figure 1
For any Variable
Specific Individual’s Causal Relevance Understood
Value or Score:
Yes No
Known A B
Unknown C D

Each of these combinations is typically present in direct inference
about risk, due to the great number of possible variables. Moreover,
each adds a degree of uncertainty to any conclusion about what is likely
to happen (or is likely to have happened) in specific individual case. The

four combinations or “cells” shown in Figure 1 are:

A. Information is “known” about the specific individual
and the generic causal relevance of that information has been
adequately modeled. We may know, e.g., that a certain
level of exposure is a causal risk factor and that this specific
individual experienced it. This combination makes the
uncertainties inherent in the generic causal model relevant
and raises the possibility that the individual’s exposure was
not accurately described.

B. Information is “known” about an individual but its
causal relevance is unknown. For example, we may know
that s/he has a family history of emphysema, but we do not
know whether that history is a risk factor for the concerned
illness.

C. The generic causal relevance of some risk factor has
been adequately determined in scientific group studies, but

9 Risk: Health, Safety & Environment 27 [Winter 1998]
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we do not know an individual’s score on that factor. We
may, e.g., have good reason to believe that a family history
of high blood pressure is a risk factor, but we do not know
whether this individual has such a family history.

D. Some facts about the specific individual are unknown
and their causal relevance is also unknown. This is true about
most of the genetic makeup of an individual, as well as
about events in the individual’s developmental and
environmental histories.

Each combination represents uncertainties in any prediction or
explanation about specific cases. The etiology of few illnesses is so
completely understood that we can predict specific case outcomes.

Some of the uncertainty in the group information relevant to the
first and third combinations is quantifiable, as discussed earlier in this
article, but the remaining uncertainties are largely unmeasurable. The
latter derive from questions of fact whose answers are unknown, and the
uncertainty inherent in any answer is unmeasurable.

Specific Classification. A second kind of uncertainty inherent in
information about specific individuals is that in classifying them under
a variable. It is a kind of individual “measurement uncertainty” and is
the primary alternative to concluding on direct inference. When
classifying a specific individual under the categories of a variable, such
as “this person suffers from Grade 1 byssinosis,” we justify it by
explaining the relevant variable (“having byssinosis”) and the criteria for
classification, together with any relevant perception-based observations
about the individual. But a possibility of error in conducting the
individual measurements is partially reflected in the reliability and
validity data on the measurement technique itself. Scientific studies
begin with selecting a variable, assembling reliability and validity data
on the measurement instrument, gathering data using it, and then
analyze resulting group data. We also use such group results to warrant
specific case classifications; our warrant for this includes explaining the
reliability and validity of the particular measurement process involved
and others, e.g., the process of perception itself. When questioned
about classifying a specific worker as having Grade 1 byssinosis, the
classification’s justification is based on our perceptions (and their
reliability and validity), and on the reliability and validity of other

measurements and instruments. This also happens when researchers
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encounter an extreme outlier or highly anomalous result: They resort to
specific causation to explain the specific case. Measurement data are
certainly foundational for science. But each individual measurement is
also always open to inquiry as to its truth, and each measurement or
classification has inherent its own peculiar uncertainties. Some of these
are to some extent quantifiable; others are not.

Conclusion

Even this brief survey shows numerous types of inherent
uncertainty, many unquantifiable. They are logically distinct and
cumulative, but we do not know how to quantify their cumulative
effect. One movement within risk assessment is to deal with
uncertainties by turning away from objective probability determinations
about the relative frequency of events and toward the measurement of
subjective probability — the subjective degree of confidence about a
prediction or explanation. Resort to subjective probability partly
attempts to measure all uncertainties in an integrated way, not by
measuring the relative frequency of the observable events or subevents,
but rather by measuring the degree of an expert’s subjective
confidence.?! This also allows us to assign probability functions to
descriptions of unique events and information about specific individuals
— such as the probability that a specific individual did or will develop
cancer from a specific exposure event.22 The degree of subjective
confidence is (at least in theory) a measurable phenomenon, even if it is
not what we set out to study.?3 Yet, it is critical that determining the
subjective confidence of a specific individual about any proposition’s
truth has itself tremendous inherent uncertainties. It has all the those
inherent in classifying a specific individual scientist under a variable
called “degree of confidence,” as well as those inherent in deciding

21 1 have elsewhere discussed the problem of “epistemic uncertainty”. Such
uncertainty derives from the differences in our current ways of understanding the
concepts fundamental to all causal conclusions — the concepts of deductive logic,
probability theory, and mathematics. See Walker, supra note 1, at 618-24.

22 Fora general discussion of the logical problems associated with direct inference
and probabilistic propositions about unique events or specific individuals; see Vern R.
Walker, Direct Inference in the Lost Chance Cases: Factfinding Constraints under
Minirnal Fairness to Parties, 23 Hofstra L. Rev. 247 (1994).

23 We set out to study the exposure effects but end up studying the scientist who
studies the exposure effects.
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whether that specific scientist’s degree of confidence is a reliable and
valid indicator of observable phenomena. We should try to determine
precisely what the subjectivist “solution” to uncertainty accomplishes,
other than contributing additional variables and uncertainties to an
already complex problem.

Within the five kinds of group uncertainty and the two kinds of
specific uncertainty, some elements are quantifiable, but many are not.
Quantification usually consists of isolating logically distinct
components of the reasoning process and devising methods for placing
probability distributions on their outcome possibilities. Sampling theory
remains a major example of such a technique. Still, even when an
element of uncertainty is quantifiable, it remains uncertainty. Our
conclusions might be in error, even though supported by reasoning that
sugggests a high probability of their being true.

If the above taxonomy and analysis of uncertainty is correct, then
even the simplest information about risks, benefits and costs has at its
base conclusions about generic and specific causation. Such premises
have inherent uncertainties of many different varieties; some can be
reduced, but none can be eliminated. Uncertainties will always be
inherent, even in theory. Moreover, matters are worse in practice. In all
risk regulation cases, decisions are made in real time. Someone must
decide whether the information is “good enough,” in the sense that the
residual uncertainties are theoretically or practically acceptable. Thus,
due to both theory and practice we must resort to “decision rules” for
when and how to proceed despite these many “faces” of uncertainty.
Such decision rules need to be evaluated and justified with an eye
toward promoting the optimal blend of effectiveness, efficiency and
equity. Risk regulation is, in the end, regulation, and the optimal
combination of effectiveness, efficiency and equity is all we can ever
hope to achieve. Perhaps we can better approximate that societal ideal,
however, if by evaluating decision rules on a precise case-by-case basis,
after we clarify the many “faces” of uncertainty.
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